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CALCULATION OF RESIDUAL STRESSES INDUCED DURING LASER 

QUENCH-HARDENING OF STEEL 

I. V. Shishkovskii UDC 535.211:621.373 

We present a theoretical and numerical analysis of the quasi-stationary uncoupled 
problem of thermoelastic-plasticity with the goal of estimating the amount of res- 
idual stress in steel after laser quench-hardening. 

During laser quench-hardening of steels, temperature and concentration gradients and 
also structuralphase transformations lead to the inception and development of temperature-, 
concentration- and phase-stresses, respectively, in the hardened layer of the metal. These are 
in turn imposed on the initial structure of the material, which in general is deformed. As a 
result, during heating the conditions for microscopic plastic deformation are created [i]. By 
changing the activation energy of the processes, this deformation significantly influences the 
kinetics of laser austenizing, carbide decay, and the diffusion of carbon and alloying elements 
out of the carbides in the matrix, and finally leads to a shift of the instrumental start of 
the (~-7) phase change. Residual stresses are formed in the surface layer during rapid cool- 
ing. The mechanical properties of the laser quench-hardened layer depend to a significant de- 
gree on these residual stresses. 

At present, analysis of the thermoelastic behavior of a solid body during laser heating 
has been widely developed [2-4], based on the simultaneous solution of the uncoupled problems 
of thermal conductivity and thermoelasticity. Fewer works are devoted to the theoretical 
investigation of phase stresses and plastic deformation during laser heating [i]. However, due 
to the difficulty of high-temperature y-phase diagnostics, comparison with experiment for laser 
heating is problematic. On the other hand, there are well-known works on laser cooling [5-7], 
where the residual stresses in the hardened layer have been determined using x-radiography. 
The stresses were determined in this layer as a functon of depth in the zone of laser influence 
(ZLI) and as a function of the spot of laser action (LA) on the surface. There are only a 
few attempts to theoretically analyze the residual stresses during laser cooling [8, 9]. For 
example, in [8] only the martensite phase (7-~) residual stresses after LA are analyzed, and 
in [3] thermal stresses calculated for the heating stage in a stationary approximation are 
called residual stresses. Moreover in both cases [3, 8], residual stress calculation was done 
within the framework of elasticity theory, which is physically unfounded. The most complete 
approach is in [9], where a method developed earlier for computing residual thermal stresses 
in welded joints is carried over to laser heat-treating of steel. This method takes the 
theory of plastic deformation into account. Thus the development of a theoretical and numer- 
ical method of computing stresses is a topical problem in laser production technology. Its 
solution will permit more exact prediction of the mechanical characteristics of the layer mod- 
ified by laser radiation (LR). 

The model of laser quench-hardening developed by us earlier [i, i0] creates a physi- 
cally clear picture of the thermal, kinetic, and diffusion processes in time and space during 
heating. We examine the interconnection of these processes and their influence on the devel- 
opment and redistribution of stresses during LA. Let an axisymmetric beam flux with Gaus- 
sian intensity distribution in the laser beam cross section fall on the surface of the steel. 

Samarskii Branch of the P. N. Lebedev Physics Institute of the Academy of Sciences of 
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Let the energy absorption take place immediately at the surface (which is true for ,I0~i0 6 
W/cm2). We will subscript all variables in the heating stage with j = i, and those of the 
cooling stage with j = 2. Here Tj < Tmp is always true. Then the general form of the equation 
of thermal conductivity, including initiRl and boundary conditions, for an uncoupled thermoelas- 
tic problem in cylindrical coordinates is 

OTj/Ot = a (OZT~/Or 2 q- l lr .  OTLIOr + OZTilOz2), 
2 9 __~,~OTSOz[~:=o = iAI~ = A l o e x p ( - - r  /r~), / ' =  1, 0 ~ t ~ . ' c  a, 

[0, / = 2 ,  t > ~ d ,  
Tj(r, z--,-oo; t )=Tl ,o (r ,  z; t = 0 ) = 0 ,  T,2(r, z; t = ~ r  z; t='~cl ). 

(1) 

(2) 

( 3 )  

In (1)-(3) we assume to a first approximation that the thermophysical constants are indepen- 
dent of temperature and are the same for the ~- and y-phases. Since for I0~I0 s W/cm 2 the 
ratio of the rates of change of strain and temperature is small [Ii], then for the LA cases 
of interest it is valid to discard the bulk term on the right side of (i), which describes 
the change in temperature due to mechanical deformation. This uncouples the problem. 

The solution to (1)-(3) is found by the Laplace and Hankel integral transforms. Thus 
during the heating stage the solution is of the form: 

T1;~,~(8, z, s)-- Alor~exp(- -SZr~/4- - -z] /~+ s/a) , ( 4 )  
2~-V~ § s/a 

where 6, s are the integration variables of the Hankel and Laplace transforms, respectively. 
By applying the inverse transform, we obtain 

T 1 (r,  z, l) := Alor ~ . . . . / 4 . ~  [ exp (-- 8~r,,2/4) Jo (St) d r .  
0 (5) 

* [exp ( - -  zS) erfc ((z -- 28al ) /2~a t )  - -  exp (zS) erfc ((z + 28at)/2~at)l. 

We note that solution (4) is analogous to that found in [2]. Using (5) as an initial condi- 
tion, the cooling stage of the solution takes on the form 

r.~;,-, < (8. z, s):= ch(z-I /~J-  s/a) ( T1,6 (~, 8, Td) exp ( - -  ~ * ~ - ~  s/a)d~ ( 6 )  
a142 § s/a 

o r  a f t e r  a p p l y i n g  t h e  i n v e r s e  t r a n s f o r m :  

alor; 
o 

F - i 2 ~ , T, (r, z, t)--= ~ exp ( -  6~ (a(t - -  Td) --r,:/4)jo(Sr ) fiB) • 
8 Z S a a ( t - - *  a) ~5' 

• / rt~ [exp ( - -  (z - -  ~)Z/4a (t - -  zd)) + e x p  ( - -  (z " -  ~)~/4a (t - -  Td})] [exp(--~6) • ( 7 ) 
6 

• erfc ((~ - -  28axd) / 2-V~dd ) - -  exp (~8) effc((~ + 28a,d)/2]/'a-~-d)], 

The diffusion redistribution of carbon in the ZLI, that is, in the volume of metal from the 
irradiated surface to a boundary whose position is determined by the isotherm T = Tsa, was al- 
so numerically analyzed by us in [i, i0]. The fundamental difference between the diffusion 
problem posed in [i, i0] and that of earlier known works [12, 13] is the transfer of the car- 
bon source in the austenite due to decaying carbides from the boundary conditions to the vol- 
ume term in the diffusion equation. Such an approach allows us to find the carbon concentra- 
tion C as a continuous function of ZLI coordinates, which then makes it possible to use it 
in subsequent calculation of the mechanical properties of steel (e.g., the hardness or the 
residual stresses). The traditional approach [12, 13] in general veryclearly solves the dif- 
fusion problem for an individual austenite grain, but without indicating explicitly the loca- 
tion of this grain in the ZLI. As a result, such a solution must be matched at the grain 
boundaries, which is a quite complicated task. 

So the diffusion equations for carbon in the y-phase with initial and boundary conditions 
is written: 
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OC/Ot-: D(OzC/Or 2 -1--1/r.OC/Or-~ 02C/Oz z) + ~OC~ (r, z, l)/Ot, 

O <~ r, z <~ Ro, Z0(zT.I ); t~., <~ t <~ ~ a, 

C(r, z, t = t ~ ) = C ~  (I - -  ~) -t- C~ (r, z, t - -  t ~ ) r  

C(r, z = O, t) = C~ (r, z - 0, t); OC/Oz6=z~,i : 0 ,  

( 8 )  

( 9 )  

( 1 0 )  

where cki is the carbon source from decaying carbides, which decay in accordance with the equi- 
librium phase diagram for carbon steel carbides. This admits the analytical interpretation 
[13]: 

CP (T(r, z, t)) = 0,8 + 0,002 (T(r, z, t)--723~ ( 1 1 )  

I n  ( 8 )  and ( 9 ) ,  ~ i s  t h e  random p r o b a b i l i t y  f u n c t i o n  o f  t h e  c a r b i d e  p a r t i c l e  d i s t r i b u t i o n  a t  
the point (r, z) in the ZLI. It takes on the value ~ = i if there is carbide at the point 
(r, z); otherwise ~ = 0. Applying consecutively the integral Laplace and Hankel transforms 
to (8), we obtain 

C~,, (5, z, s) = (0,002T (5, z = 0, s ) -  0,646rh (St)) exp(--  z3/62 -]- s/D ) -- 

- -  (C~ (1 - -  tp) + 0,646~) D8 rh  (Sr) [exp ( - -z l f82  -7 s/D ) -- 
(~2 ~_ s/D) 

AI~ 0,001/s / (a  -- D) �9 
- - 1 ] - -  2~T/-~ + s/a 

�9 exp[--  ~Zr~/4 -- z ( l / ~ +  s/a .-. ] / ~ +  s/D)], 

(12) 

where T6, s is from the solution to the heat problem. The explicit functional ~depemdence of 
the carbon concentration on the ZLI coordinates and the laser quenching ~ar:ameters can n~w be 
found by using the Laplace and Hankel transforms. We note that the expre-ssion obtained is 
quite cumbersome. It makes sense to simplify it by using the physically reasonable approx- 
imation D << a. Then 

C (r, z, t) : :  0,002T (r, z, t) -~ Ca (1 - -  9) - -  0,646<~ - 

I [z--2;3D'( t-- tsa)  ] -I- -- 0,323 t n rj l  (6r)j0 (6r) d~ * exp ( - -  z~) erfc , �9 
~ 2 ] / O  (t - -  t sa) ( 1 3 )  

+exp(z6)erfcI z@2~D(t - - l sa)  ]t  
2]/D (t -- ts~ " 

I t  i s  e a s y  t o  show t h a t  ( 13 )  s a t i s f i e s  t h e  i n i t i a l  and b o u n d a r y  c o n d i t i o n s  o f  t h e  d i f f u s i o n  
e q u a t i o n  ( 8 ) - ( 1 0 ) .  

The elastic thermal stresses which arise during laser heating disappear with subse- 
quent cooling if these stresses do not exceed af. It is assumed that stress and strain can 
exist in the initial state of the metal, before LA, but heating up to laser temperatures com- 
pletely removes these initial stresses [ii, 14]. Besides, in problems of laser quench- 
hardening of steels it can be assumed that the rate of establishment of the stress state is 
higher than the rate of establishing thermal equilibrium, that is, a~d<<V~d [2]. Then 
for long duration LA ~d characterized by pulsed and continuous radiation, d2ui/dt 2 = 0 and the 
equation of mechanical motion from elasticity theory [15] is stationary. Unlike the tradi- 
tional approach to analysis of the thermoelastic state of steel during LA, which considers 
only elastic and thermal stresses, we will take other components of the total strain tensor 
~ij(Xc, t) into our calculation. So it is valid to suppose that at the moment of phase trans- 
formation (~ + ~) there are phase stresses due to the difference in specific volumes of the 
~- and y-phases of Fe. The subsequent course of the phase transition (e.g., ~ + y during las- 
er heating) leads to carbon saturation of the y-phase Fe lattice. As a result, the lattice 
parameter increases [12]. The growth of the lattice parameter within the framework of the 
existing new phase leads to yet greater increase of its relative volume compared to the sur- 
rounding old phase (i.e., s-phase), and in analogy with thermal stresses, it makes sense to 
speak of concentration stresses [12]: 
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con. 
(~k (x d, t ) =  - -3K~(C(xc . ,  t ) - -Co) ,  (14)  

where ~ is the relative change in the lattice parameter of the solvent in a solution of i% by 
mass of additive, and C(x c, t) is the concentration of these additives. In this way, elasti- 
city theory allows for a complex description of elastic, thermal, concentration and phase stres- 
ses : 

cSh (x c, t) = - -  3K[~ (C (T (x c, t)) -- Co)6i~ -- 3K• (T (Xc, t) -- To) 6~ ~- 
(15)  

+ K ~  (x e, t) 6i~ + 2a (~(Xct) - 1./3~u (x e , t)). 

Taking these assumptions into account, the elastic problem of determining the stresses 
and strains reduces to solution of the following system of equations: 

O%r/Or @ O(L.z/OZ -~- (O?, , -  O~oo)/r = 0, 

Oo,~i'Or+ O~,Oz + ~,~/r = 0, 

for which the stresses and strains are expressed in terms of displacements as: 

(i6) 

d~.,. = (k _a 2p.) OUr~Or v- )~ ( u / r  § Ou,,,'Oz) - -  (3~ q- 2~) (xT + OC), 

%e - - ~ (Our~Or ~- OudOz) + ()~ + 2~) u, . / r - -  (3~ § 2~) (• + ~C), 

~ -- (Our~Or ~- u,./r) )~ -? (k ~- 2~) Ou/Oz -- (3k -? 2~) (• v- ~C), 

(17) 

o~==2ge~,s,.~.=Ou,.tdr,~oo=uAr, ezz=Ou/dz ,  g,.~= (du/Or+Ou~./Oz)/2 , and all remaining components of the 

stress and strain tensors are evidently zero. The condition at the free boundary z = 0 is as 

usual Ozz = arz = 0. The system (16) and (17) was solved by the method of thermoelastic poten- 
tials with the aid of Hankel transforms and using the solution for the thermal and diffusion 
problem found earlier: (4), (6), and (12). Finally, for the displacement and strains we obtain: 

tgr = t }~d6 [(1 ~- v) exp (--  6z) (zT 6 @ ~C6) [1 - -  z6/(1 --- 2v)] + 8A [ch 6z- -  

- -  z6exp (--  6z) @ (1 - -  2~) exp (--  6z)] ---8 B]; 

u.~ --  - -  i ]~ [(1 + ~,) exp (--  6z) (xT 6 6- [5C~,) [1 + (1 § zS)/(1 - -  2v)] + 
0 

-'- 6A (ch 6z q- z8 exp (--  6z) ~,- (1 - -  2~) exp ( - -  6z)] - -  OB/Oz]; 

8 r r  = t (~Jo - -  i l l  r) d6 [(1 + ~) exp (--  6z) (• 6- [5C6) [1 - -  z6/(1 - -  2v)l § 
b 

_r 6A *[ch 6Z - -  z6exp (--  6z) +(~--2v)  exp (--  6z)]--6B]; 
(18) 

s,= = .! ]o6d6 [(1 q- ~) exp (-- 6z) (• + ~C~) [1 -r z6/(1 - -  2v)] q- 6A X 
0 

X [ z 6 e x p ( - - 6 z ) - - s h ~ 3 z d - ( 1 - - 2 v ) e x p ( - - 6 z ) ] - - e . ~ : p (  8z)l q- 1/60ZB/Ozz]; 

~,.~ = 2  i ]i6d5 [(! + v) exp (-- 6z) (• ~- ~C~) z 6 / ( 1 - -  2~) @ 6A [sh 6z ~- z8 * 
0 

�9 exp (-- 6z)] + OB/Oz] %0 = ur/r. 

The explicit form of functions A(6) and B(6, z) is determined in the Appendix. Solution (18) 
completely satisfies the boundary conditions at the free surface and determines the stress ten- 
sor components for nonstationary LA. From inspection it also follows that err + ezz + ~00 = 
3( •  Due to the cylindrical symmetry of the problem, Ur, EO0 , erz , and Orz vanish at 

r = 0. 

However, (18) cannot be used when the plastic state is reached, when the stresses are 
>_of. Analysis of the stresses and strains in the plastic region of ZLI is in principle necessary, 
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since only the existence of plastic strain explains the presence of residual stresses during 
cooling. The best-known condition for the change in a metal to a state of flow is the von 
Mises criterioni[ll, 14] 

(~ -- ~oo) a + (~oo -- ~)z + (~zz -- ~)z = 2~. (19) 

Below we will rely on one of the versions of the elastic-plastic approximation method 
of Ii'yushin for the solution of the nonlinear "deformation"equations of the theory of plastic 
equilibrium. Then the problem of plasticity reduces to a solution of the previously given 
sequences of linear equations of the type (16) and (17) with an accuracy N Z (YJi - YJeli)/YJi- 

Each of these can be interpreted as a Hookean elastic problem [14, 16]. The distinguishing 
feature of the method used here of variable elastic parameters is that it allows us to find 
a solution in the plastic region of ZLI without changing problem statement (16) and (17), but 
with variable elastic coefficients [16]: 

E ~ . . . .  3E/(2 (v -k 1) ~ -k 1 - -  2v), 

q}(1 + v ) - -  1 -}- 2'v 
",,7 * ~ > 

2c# (1 + "v) + 1 - -  2v ' 

G* = E*/2  (1 + ,v*) = G/(I}. 

(20) 

We note that for v + 1/2 (a rigid-plastic body), the relations (20) simplify: v* = 1/2; E ~ = 
E/#. The e~pli:cit form of the universal plasticity function ~, determined from a series of 
experiments on ~rop~r~anal (simple) loading for constant ~i and T over the course of an experi- 
ment, was t~ken frum I~7] asing the temperature dependence for af: 

~f  = 5qexp  (--~ 0,005 (T - -  1200)) { MPa ), 

O ( T ,  a, 7i) =~ ~ f [ i  + (3 ~- 68~ 7~~ * exp (0,016 ( T - -  1200))]/G, (21) 

%,,- = [[(8,.,. - -  8oo) ~ + (8ao - -  8~z) 2 ~- (szz --8, , . )  2 § 8,~/31/3] 1% 

where q = i for steel 45, q = 0.85 for U8 and q = i.I for steel 40. 

A package of FORTRAN programs based on this theoretical model has been written. It in- 
cludes: computation of the thermal field in space during the heating and cooling stages; de- 
termination of the boundaries of ZLI and zone of laser tempering (ZLT) with depth and at the 
sample surface using (5) and (7); space-time distributions of free carbon in the y-phase in 
ZLI according to (13); and computations using (17) and (18) of the displacements, strains and 
stresses in the elastic regions of ZLI and ZLT. Finally, an iterative mesh scheme for comput- 
ing displacements, strains and stresses in the plastic ZLI regions was developed and implement- 
ed in the package. This iterative scheme uses the method of variable elastic parameters (20) 
within the framework of "deformation" theory. This permits determination of the linear dis- 
location density and evaluation of the amount of residual stress. 

We have done calculations for the carbon steels steel 45 and U8 in specific LA regimes 
[5-7] without heat polishing of the surface by the pulsed and continuous radiation. Figure la 
shows an example of the thermal calculation at the ZLI boundary (dashed lines) and the ZLT 
(solid line). It also shows the position of these boundaries with respect to the mesh parti- 
tioning in r and z. The points indicate those mesh nodes where, according to the probability 
function ~, carbide is to be found. The hatched area is the zone of plastic deformation dur- 
ing heating, and the cross-hatched area shows the zone of secondary plastic deformation during 
cooling. Figure ib depicts the distribution of carbon concentration in the y-phase ZLI. This 
distribution ischaracterized by a "trough" in the functional dependence C = C(r, z) at those 
mesh nodes with the highest probability of carbide particle location. This is completely justi- 
fied if the carbon at these points must be in a bound state. The calculations show that the 
u z vector displacement component is always negative. In this case it has maximum absolute value 
at the center of the spot equal to u z = -8.85 ~m at the moment of LA cessation (Tma x = 1380~ 
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Fig.  1. Computational r esu l t s  fo r  a (a) thermal (~ and (b) d i f -  
fus ion  (% by mass) problem (regime [5]): i) z = 0 cm; 2) z = 5.7- 
10 -3 cm; 3) z = 11.4.103 cm. r, z in em, C in % by mass. 

Nd~10 Iz 

Fig. 2. 
i) z = 0 cm; 2) z = 5.95"10 -2 cm; 3) 11.9-10 -2 cm. 

6/i' 
i 

I - " k L s , . 7 . / ~ / . z , , ~  ,~_~,sz,70 

] 

Fig. 2 Fig. 3 

Computation of the lineal dislocation density (i/cm 2) (regime [7]): 

Fig. 3. Comparison of calculated stress (N/m 2) with experiment (regime [5]): i) 
experiment; 2) diagonalization; 3) plus averaging; 4) plus accounting for unload- 
ing; 5) ~ = 0; 6) original calculation. 

Physically this is expressed in the mechanical displacement of the free surface. The cal- 
culation already gives Uz(r = 0, z = 0, t) = --0.09 Dm at room temperature during the cooling 
stage, which once more gives evidence of the insignificant amount of distortion (same LA regime 
as in [5]). Knowledge of the elastic-plastic strains permits calculation of N d in ZLI (Fig. 
2). To do this it is necessary to subtract out the elastic contribution from the elastic- 
plastic strains during maximum heat flux. Then N d = gpl/(b.s [i], where b = 4.10 -8 cm. The 
quantity s is of the same order as the grain size, and if we assume that we are dealing with 
Frank-Read sources, then such a characteristic size is intrinsic to the model, since of/G = 
b/s The calculation using these relations gives the qualitatively correct results of Fig. 
2, since of (21) and G are computed at every ZLI point. However, comparison of our computation- 
al results with available experimental data on residual stress distribution with depth Z and 
at the surface R of the ZLI [5-7] shows significant disagreement (e.g., see Fig. 3, curves 
1 and 6 for the regime being discussed [5]). 

A sin 2 ~ analysis of the experimental procedure for measuring residual stresses, whose 
contents are given in detail in [18], shows the following. For adequate comparison of compu- 
tational results with experiment, we must: diagonalize the matrix components of the strain ten- 
sor, changing the direction of the z-axis in the process; carry out an area averaging on the 
x-ray photographs; and change over to a plane-stress state, that is, account for unloading. 
Figure 3 (curves 2-4) show the results of carrying out these operations in succession. As can 
be seen, qualitative agreement of computational results with experiment has been practically 
achieved. In principle, the important result is depicted in Fig. 3 (curve 5), where, other 
conditions being equal, the residual stresses in a purely thermoelastic-plastic problem were 
computed, without accounting for carbon diffusion (6 = 0). Comparison of curves (i, 4, 5) 
shows the significance of introducing the concentration stresses in our work. 
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Thus in this work, we have done the following. 

i) We have obtained a complete analytical solution to the uncoupled quasistationary 
thermoelastic problem which includes concentration stresses. 

2) We developed an iterative mesh scheme for computing the values of the lineal disloca- 
tion density and residual stresses. This was done using the method of variable elastic param- 
eters. 

3) We obtained full agreement of the thermal calculations with experimentally determined 
boundaries of ZLI and ZLT and qualitative agreement for the residual stress calculation. 

APPENDIX 

Equations (16) and (17) are easily reduced to a system of second order differential 
equations by using the Gooder function method [ii]. It can be shown that: 

A (6) -- ~ ~S6 exp ( - -  6~) d~, 
0 

B (6, z) := _Q ~ S~ sh 6 (z - -  E) d~, 
0 

(IA) 

where S~ = • 47 ~C~. Then, using (5) and (12) we have during the heating stage: 

__ (1 47 v) A l o d  9 
( 1 - - v )  (• + 0,002[~) ~ e x p ( - - ~ r s / 4 ) ;  

A (6) = . q [ 1 / 6 - - 2 ~ e x p (  - -  6Zat) 6at �9 e r f c ( 6 ] / - a t ) l ;  

B (8, z) = Qlsh 6z �9 (1 /6  47 26at) 47 2 ] /  a ] ~  exp ( - -  z"-/4at - -  6Zat) - -  2 ch6z ,  

�9 V ' a t / a  exp ( - -  6=at) + 6at err (6 1 / ~ - -  e x p ( - -  6z) (z - -  26at) /2  erfc [(z - -  

- -  26at) /2  1/~1 - -  exp (6z) (z -+- 20at) /2  erfc [(z § 26at) /2  ]/-aZatl], 

(2A) 

and for the cooling stage, using (7) and (13): 

.Q --  AZ~ exp ( - -  62r~/4) (1 47 v_____~) (• , 0,002~) i ~ [exp ( - -  
- 8~------g (1 - - v )  -7 

0 

- -  6~) e r f c  [(~ - -  26a'cd)/2 "t/~'dl - -  e x p  (6~) e r f c  [(~ 47 26a-ca)/2 -I /~atdl l ;  

A (a) = Q . ~6)~ 2 ]/a-{7 - -  ~d) + exp (~6). erfc 26a2 g-a(t---Cd)(t - -  td) -i. ~ , (3A) 

I [exp I t B(6, z ) = 2 Q  2 s h 6 z * c h  6 ~ - - c h a z  ( - -~6)erfc  2 6 a ( t - - - t d ) - - ~  ' 
.. , 2 -V'a (t ---ca) ~-  

2 ]/'-~(t - -  Td> ' 

where ~ is the integration variable in (7) and (3A). Further, by simple differentiation of 
the third equations in (2A) and (3A) we can easily find 8B/Sz and 82B/Sz 2. We note that A(6) 
and B(6, z) do not depend on the radius r, and in addition, B(6, z = 0) = 8B(6, z = 0)/3z = 
~=B(6, z = 0)/~z 2 = 0, which is evident from the second equation in (IA). 

NOTATION 

Tj, representative temperature in the steel; Tmp , melting point temperature for the 

steel; I0, i maximum power density of the LA; A, LR absorption coefficient; a, thermal diffus- 
ivity; A s, thermal conductivity; p,;density; rs, radius of the LR heating spot; "cd, duration 
of the LA; E, Young's modulus; v, Poisson's ratio; ~ , thermal expansion coefficient; j0(x), 

j1(x), Bessel functions of the zeroth and first order; Tsa, temperature of the start of aus- 
tenizing of the steel; C, concentration of free carbon in the ~-phase ZLI; R 0, Z 0, ZLi bound- 
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ary coordinates; D, diffusion coefficient for carbon in the 7-phase; Tsa, start time for the 
(~ + 7) transformation at the ZLI boundary; Ca, concentration of carbon in ferrite ~ 0.02% by 
mass; Vs, speed of sound in the metal; of, flow limit for steel; gi~, strain tensor; oij , 
stress tensor; K, coefficient of bulk compression; %, ~, Lame coefflcients; 6ij , Kronecker 
delta; G = D, shear modulus; 7i, strain rate; 9, universal plasticity function; Nd, lineal 
dislocation density; b, Burgers vector; s dislocation path. 
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